Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Viruses ; 15(2)2023 02 14.
Article in English | MEDLINE | ID: covidwho-2241322

ABSTRACT

New variants of SARS-CoV-2 continue to emerge and evade immunity. We isolated SARS-CoV-2 temporally across the pandemic starting with the first emergence of the virus in the western hemisphere and evaluated the immune escape among variants. A clinic-to-lab viral isolation and characterization pipeline was established to rapidly isolate, sequence, and characterize SARS-CoV-2 variants. A virus neutralization assay was applied to quantitate humoral immunity from infection and/or vaccination. A panel of novel monoclonal antibodies was evaluated for antiviral efficacy. We directly compared all variants, showing that convalescence greater than 5 months post-symptom onset from ancestral virus provides little protection against SARS-CoV-2 variants. Vaccination enhances immunity against viral variants, except for Omicron BA.1, while a three-dose vaccine regimen provides over 50-fold enhanced protection against Omicron BA.1 compared to a two-dose. A novel Mab neutralizes Omicron BA.1 and BA.2 variants better than the clinically approved Mabs, although neither can neutralize Omicron BA.4 or BA.5. Thus, the need remains for continued vaccination-booster efforts, with innovation for vaccine and Mab improvement for broadly neutralizing activity. The usefulness of specific Mab applications links with the window of clinical opportunity when a cognate viral variant is present in the infected population.


Subject(s)
COVID-19 , Humans , COVID-19/prevention & control , SARS-CoV-2/genetics , Antibodies, Monoclonal , Antiviral Agents
3.
J Exp Med ; 219(9)2022 09 05.
Article in English | MEDLINE | ID: covidwho-1984992

ABSTRACT

Humoral immunity to SARS-CoV-2 can be supplemented with polyclonal sera from convalescent donors or an engineered monoclonal antibody (mAb) product. While pentameric IgM antibodies are responsible for much of convalescent sera's neutralizing capacity, all available mAbs are based on the monomeric IgG antibody subtype. We now show that IgM mAbs derived from immune memory B cell receptors are potent neutralizers of SARS-CoV-2. IgM mAbs outperformed clonally identical IgG antibodies across a range of affinities and SARS-CoV-2 receptor-binding domain epitopes. Strikingly, efficacy against SARS-CoV-2 viral variants was retained for IgM but not for clonally identical IgG. To investigate the biological role for IgM memory in SARS-CoV-2, we also generated IgM mAbs from antigen-experienced IgM+ memory B cells in convalescent donors, identifying a potent neutralizing antibody. Our results highlight the therapeutic potential of IgM mAbs and inform our understanding of the role for IgM memory against a rapidly mutating pathogen.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/therapy , Humans , Immunization, Passive , Immunoglobulin G , Immunoglobulin M , Memory B Cells , Spike Glycoprotein, Coronavirus , COVID-19 Serotherapy
5.
Cell ; 184(1): 169-183.e17, 2021 01 07.
Article in English | MEDLINE | ID: covidwho-1064911

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus is causing a global pandemic, and cases continue to rise. Most infected individuals experience mildly symptomatic coronavirus disease 2019 (COVID-19), but it is unknown whether this can induce persistent immune memory that could contribute to immunity. We performed a longitudinal assessment of individuals recovered from mild COVID-19 to determine whether they develop and sustain multifaceted SARS-CoV-2-specific immunological memory. Recovered individuals developed SARS-CoV-2-specific immunoglobulin (IgG) antibodies, neutralizing plasma, and memory B and memory T cells that persisted for at least 3 months. Our data further reveal that SARS-CoV-2-specific IgG memory B cells increased over time. Additionally, SARS-CoV-2-specific memory lymphocytes exhibited characteristics associated with potent antiviral function: memory T cells secreted cytokines and expanded upon antigen re-encounter, whereas memory B cells expressed receptors capable of neutralizing virus when expressed as monoclonal antibodies. Therefore, mild COVID-19 elicits memory lymphocytes that persist and display functional hallmarks of antiviral immunity.


Subject(s)
COVID-19/immunology , COVID-19/physiopathology , Immunologic Memory , SARS-CoV-2/physiology , Adult , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , B-Lymphocytes/immunology , COVID-19/blood , Female , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Male , Middle Aged , SARS-CoV-2/chemistry , Severity of Illness Index , Spike Glycoprotein, Coronavirus/metabolism , T-Lymphocytes/immunology
6.
J Infect Dis ; 223(7): 1120-1131, 2021 04 08.
Article in English | MEDLINE | ID: covidwho-990725

ABSTRACT

BACKGROUND: To determine how serologic antibody testing outcome links with virus neutralization of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), we evaluated individuals for SARS-CoV-2 antibody level and viral neutralization. METHODS: We compared serum Ig levels across platforms of viral antigens and antibodies with 15 positive and 30 negative SARS-CoV-2 controls followed by viral neutralization assessment. We then applied these platforms to a clinically relevant cohort of 114 individuals with unknown histories of SARS-CoV-2 infection. RESULTS: In controls, the best-performing virus-specific antibody detection platforms were SARS-CoV-2 receptor binding domain (RBD) IgG (sensitivity 87%, specificity 100%, positive predictive value [PPV] 100%, negative predictive value [NPV] 94%), spike IgG3 (sensitivity 93%, specificity 97%, PPV 93%, NPV 97%), and nucleocapsid protein (NP) IgG (sensitivity 93%, specificity 97%, PPV 93%, NPV 97%). Neutralization of positive and negative control sera showed 100% agreement. Twenty individuals with unknown history had detectable SARS-CoV-2 antibodies with 16 demonstrating virus neutralization. Spike IgG3 provided the highest accuracy for predicting serologically positive individuals with virus neutralization activity (misidentified 1/20 unknowns compared to 2/20 for RBD and NP IgG). CONCLUSIONS: The coupling of virus neutralization analysis to a spike IgG3 antibody test is optimal to categorize patients for correlates of SARS-CoV-2 immune protection status.


Subject(s)
COVID-19 Serological Testing/methods , COVID-19/diagnosis , Neutralization Tests/methods , SARS-CoV-2/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/isolation & purification , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antibodies, Viral/isolation & purification , COVID-19/blood , COVID-19/epidemiology , COVID-19/immunology , Enzyme-Linked Immunosorbent Assay , False Positive Reactions , Female , Humans , Immunity, Humoral , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin G/isolation & purification , Male , Middle Aged , Predictive Value of Tests , Prevalence , SARS-CoV-2/isolation & purification , Sensitivity and Specificity , Seroepidemiologic Studies , Spike Glycoprotein, Coronavirus/immunology , Young Adult
7.
Res Sq ; 2020 Aug 13.
Article in English | MEDLINE | ID: covidwho-725304

ABSTRACT

The recently emerged SARS-CoV-2 virus is currently causing a global pandemic and cases continue to rise. The majority of infected individuals experience mildly symptomatic coronavirus disease 2019 (COVID-19), but it is unknown whether this can induce persistent immune memory that might contribute to herd immunity. Thus, we performed a longitudinal assessment of individuals recovered from mildly symptomatic COVID-19 to determine if they develop and sustain immunological memory against the virus. We found that recovered individuals developed SARS-CoV-2-specific IgG antibody and neutralizing plasma, as well as virus-specific memory B and T cells that not only persisted, but in some cases increased numerically over three months following symptom onset. Furthermore, the SARS-CoV-2-specific memory lymphocytes exhibited characteristics associated with potent antiviral immunity: memory T cells secreted IFN-γ and expanded upon antigen re-encounter, while memory B cells expressed receptors capable of neutralizing virus when expressed as antibodies. These findings demonstrate that mild COVID-19 elicits memory lymphocytes that persist and display functional hallmarks associated with antiviral protective immunity.

SELECTION OF CITATIONS
SEARCH DETAIL